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Abstract 

Bioflavor and fermented foods in Indonesian cuisine were interesting for studying the relationship between fer-
mentation products, microbial aspects, functional implications and biotechnological applications. The methodol-
ogy employed in the literature review, including the sources used and inclusion criteria, demonstrates a meticulous 
approach to gathering and synthesizing information. Additionally, the factors influencing the perception of flavors 
on the tongue provide valuable insights into the complexities of taste perception, encompassing the role of spe-
cific amino acids and alkaloid compounds. The discussions on flavor production through microbial fermentation 
and the application of recombinant DNA technology in microbial flavor production showcase the strides made 
in biotechnology and their profound impact on flavor development. The escalating significance of natural ingredients 
and biocatalyst processes in producing flavor compounds aligns with consumer preferences for natural and sustain-
able options. Moreover, safety considerations for bioflavor products derived from biotechnology underscore the criti-
cal importance of ensuring consumer-friendly and safe products in this field. Functional bioflavor constraints provide 
practical considerations for developing and applying functional flavors, emphasizing the necessity for natural, safe 
and stable alternatives to conventional food additives. Overall, it offers a comprehensive and in-depth exploration 
of the multifaceted realm of flavor, integrating scientific, cultural and technological perspectives. It is an invaluable 
resource for researchers, industry professionals and enthusiasts engaged in flavor science and technology.
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Introduction
The flavor is a complex sensory experience that engages 
multiple senses (smell, taste, sight and mouthfeel) when 
consuming food [1]. It comprises three fundamental 
components: smell, taste and mouth sensation [2]. To 
comprehend flavor, it is imperative to delve into the com-
position and compounds responsible for taste and smell 
and how they interact with receptors in our taste buds 
and olfactory organs, ultimately transmitting signals to 
the central nervous system [1–3]. Taste perception center 
around four primary tastes: sweet, bitter, sour and salty 
[4–6]. Additional nuances, such as sourness, spiciness, 
heat and coldness, can further influence this perception 
[5–7]. Taste cells undergo regeneration approximately 
every seven days. The human palate houses around 9–10 
thousand taste buds, but their numbers decrease with age 
[7–10]. Variations in taste perception can be attributed to 
factors like age, gender and smoking habits, with heavy 
smokers exhibiting diminished responses [8, 9] Texture, 
encompassing smoothness, roughness, graininess and 
viscosity, significantly shapes the overall sensory expe-
rience [9–11]. Changes in viscosity can alter taste and 
smell by affecting the speed at which olfactory receptor 
cells and salivary glands are stimulated [11–13].

Functional flavors enhance the taste of food products 
and offer physiological benefits for overall well-being. 
These compounds, found in ingredients like ginger, 
herbs, green tea, ginseng and spices, impart desired tastes 
and confer health advantages, including antimicrobial 
and anti-inflammatory properties [12–15]. Flavor com-
pounds are pivotal for the food and beverage industry, as 
they dictate product organoleptic properties and market 
appeal. They are categorized into two groups: indigenous 
compounds that arise from raw materials or during pro-
cessing and intentionally added compounds, which can 
be natural or synthetic. These compounds are pivotal in 
defining product flavors and catering to consumer prefer-
ences [14–16].

While synthetic flavor compounds are often favored 
for their cost-effectiveness, increasing consumer appre-
hensions about safety and health have driven a surge in 
demand for natural flavor compounds [17, 18]. These not 
only intensify product flavor but also provide supplemen-
tary health benefits. Research endeavors in this domain 
aim to produce natural flavors more economically [19–
21]. Adopting biocatalyst processes in flavor compound 
production is gaining traction as a sustainable alternative 
to chemical synthesis.

Indonesian cuisine relies largely on microbial fermen-
tation, and it employs the extensive microbial biodi-
versity of the country to generate an extensive number 
of traditional fermented foods. A critical phase in the 
production of bioflavors, which are organic flavoring 

compounds derived from microbial metabolites, is 
microbial fermentation. During fermentation, micro-
organisms like yeast and bacteria can create bioflavor 
chemicals via biosynthetic processes. In order to generate 
an assortment of taste chemicals, they decompose lipids, 
proteins and carbs. The kind of taste chemicals generated 
can differ considerably depending on the microbe and 
substrate that are employed. Typical bioflavor substances 
include acids, alcohols, ketones and esters; each among 
these chemicals adds a unique flavor note, such as sour, 
buttery or fruity [1]. Microbial fermentation is in line 
with sustainable principles when it pertains to flavor pro-
duction. It assists in creating an environmentally friendly 
food system through utilizing renewable resources and 
minimizing dependability on chemical processes [22]. 
Additionally, microbial fermentation is essential to the 
production of bioflavors since it allows a sustainable and 
natural approach to generate a variety of flavor compo-
nents. In furtherance of encouraging the employment 
of renewable resources, this strategy meets customer 
demand for natural and eco-friendly products.

This review explores the microbial criteria in functional 
flavor, particularly fermented foods and their bioactive 
components within indigenous Indonesian cuisine. This 
exploration aims to shed light on the intricate interplay 
between microorganisms, flavors and the health-enhanc-
ing properties of these traditional foods.

Methods of scientific review
This literature review examined, synthesized and ana-
lyzed crucial information from various sources, encom-
passing books, journal articles and various published 
materials. These resources were distilled into a compre-
hensive overview of the current body of knowledge con-
cerning bioflavor in fermented foods and their bioactive 
constituents within the unique context of indigenous 
Indonesian cuisine. The review also underscored areas 
where research gaps exist and proposed potential ave-
nues for future inquiry. Specifically, this review delved 
into existing research on the proliferation of microorgan-
isms in traditional Indonesian cuisine, their involvement 
in flavor generation and the associated technologies, 
including the application of recombinant DNA technol-
ogy in microbial bioflavor production. It also explored 
the role of biotechnology in developing bioflavors, the 
safety considerations surrounding bioflavor products 
derived from biotechnology and the constraints related 
to functional bioflavors.

The information sources were collated from reputable 
academic research databases and search engines: Google 
Scholar, ScienceDirect, Scopus and JSTOR. Inclusion cri-
teria encompassed studies published in peer-reviewed 
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journals, proceedings and books, specifically focusing on 
microbial aspects, flavor, recombinant DNA technology, 
safety and functional constraints of flavors. Studies not 
available in either English or Indonesian were excluded 
from consideration. The keywords employed in the 
database searches included microbial flavor production, 
indigenous Indonesian cuisine, bioactive compounds, 
nutrition, food and culture, flavor production biotech-
nology and biotechnologically derived products’ safety. 
The scope of the review was restricted to publications 
from 2000 to 2023. All relevant academic papers in the 
searches incorporated qualitative and quantitative data 
analysis methods.

Factors affecting the perception of bioflavor 
on the tongue
The high glutamic acid produces a strong taste when 
added to a food ingredient and can stimulate the nerves 
found on the human tongue. The properties of glutamic 
acid are utilized in the flavoring industry [20, 21]. The 
high content of glutamic acid produces a savory aroma 
and umami taste. In peptides, amino acids glycine, ala-
nine, valine, leucine, tyrosine and phenylalanine will taste 
bitter [22]. According to Zhao et al. (2016) [23], arginine 
at concentrations below the threshold will increase the 
salty taste and give an umami taste. In large quantities, 
crab scallops can give a sweet taste and a distinctive sea-
food flavor [24]. Glycine and alanine are active flavor 
components that can give a sweet taste to food [24]. The 
sweet taste is caused by aliphatic organic compounds 
containing hydroxy groups (OH), several amino acids, 
aldehydes and glycerol.

According to Wongso & Yamanaka (2007) [24], the 
amino acid components that can give a bitter taste are 
valine, leucine and histidine, but they are not as bitter 
as phenylalanine. According to Stoeger et al. (2020) [25], 
the amino acid components that can give a bitter taste 
are glycine, alanine, serine and threonine have a sweet 
taste, whereas arginine, leucine, valine and methionine 
exhibit different flavor profiles. The content of several 
alkaloid compounds also causes a bitter taste. A proton 
donor causes a sour taste. The intensity of the sour taste 
depends on the H + ions produced from the hydrolysis of 
the acid.

Temperature affects the ability of the buds to taste. 
Sensitivity will decrease if the temperature is greater than 
20 °C and less than 30 °C, which will cause a slight differ-
ence in taste. For example, the taste of hot coffee will be 
less bitter when compared to cold coffee, and ice cream 
that has melted will taste sweeter when compared to 
ice cream that is still frozen. Too hot food will burn the 
tongue, damaging the taste buds’ sensitivity, but dam-
aged cells will be replaced within a few days. Cold food 

can anesthetize your taste buds so they are no longer 
sensitive.

The threshold is the lowest concentration limit for 
a taste, so it can still be felt. This threshold is not the 
same for everyone and is different for different tastes, 
for example, 0.087% NaCl and 0.4% sucrose. A person 
can experience taste blindness. To test whether a per-
son tastes blind, testing can be done using the phenyl 
thiocarbamide (PTC) compound. If the person is blind 
to taste, this compound will taste bitter. Other taste com-
ponents interact with primary taste components, which 
can increase or decrease taste intensity. The effect of 
this interaction is different at the level of concentration 
and threshold. Adding acid to the threshold concentra-
tion will add a salty taste to NaCl, while sugar will reduce 
the salty taste to NaCl and caffeine. Small changes in the 
chemical structure can change the taste of these com-
pounds; for example, a sweet taste becomes bitter or 
bland. Adding a nitro group to the meta-position makes 
the compound very bitter. Substitution of methyl groups 
on iminos results in bland compounds.

Bioflavor functional concept in traditional 
fermented foods
Flavor compounds develop when microorganisms grow, 
and their enzymes break down basic ingredient com-
ponents such as carbohydrates, proteins and lipids. The 
end products of metabolism found in traditional fer-
mented food products can be elements such as amino 
acids, fatty acids and nucleotides, which provide certain 
taste characteristics [26]. Hydrophobic amino acids (for 
example, phenylalanine, leucine, isoleucine and methio-
nine) produced by the action of proteolytic enzymes in 
the milk protein casein produce a bitter taste in Dadih 
and Dangke products. However, further metabolism of 
these compounds can produce a diversity of taste/aroma 
compounds: These compounds can be sulfur/cabbage 
resulting from the conversion of phenylalanine to meth-
anethiol; sweet like honey, which is produced when phe-
nylacetic acid is produced from phenylalanine; and fruit/
banana/malt characteristics produced by the conver-
sion of leucine to isovaleric acid, 3-methyl-1-butanol or 
3-methyl butanal [27]. The breakdown of sugar (lactose) 
in dairy products usually results in the product being 
organic acids that produce a sour taste, but also alcohol 
and diacetyl, which gives a buttery aroma, or acetoin, 
which gives a fruity taste [28]. Methyl ketones and related 
secondary alcohols are produced from fatty acids and 
give the cheese its ’blue tone’ [29]. All these character-
istics have been described in blue cheese, and although 
individually, they may not always sound appealing; when 
combined, they provide desirable characteristics to the 
product. For example, the production of three volatile 
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sulfur compounds, methanethiol, dimethyl disulfide 
and dimethyl trisulfide, is related to the desired flavor of 
cheddar cheese [30].

The types of bioflavor compounds produced through 
traditional fermentation processes and their concentra-
tions depend not only on the composition of the food 
but also on the composition of the microbial population 
[31]. Each microorganism produces unique primary and 
secondary metabolite final products, but these can then 
be used by other microorganisms, which produce fur-
ther final products. Production conditions determine 
the extent to which a particular group will continue to 
metabolize and produce the associated final product. 
Traditional spontaneous fermentation relies on native 
microorganisms introduced by the components [32]. 
However, this can result in poor product quality or even 
production failure if the right species are not present to 
provide certain desired characteristics. ’Back slopping’ 
(using fermentation products as inoculum) can over-
come this but can also perpetuate undesirable batches. 
The use of commercially produced starter cultures with 
known metabolic characteristics to initiate fermentation 
is widespread, and bacteria, yeasts and fungi are widely 
used in the food and beverage fermentation industry 
[29]. This produces a more uniform product but may 
only sometimes be the primary species influencing flavor 
formation.

Lactic acid bacteria such as Lactococcus lactis and Lac-
tobacillus sp. are an important group of bacteria used 
in the dairy, fermented meat and fermented vegetable 
industries. These bacteria produce lactic acid as a final 
product from glucose but depending on the subspecies 
Lactococcus lactis or species Lactobacillus sp. Other end 
products that contribute to flavor may include ethanol, 
diacetyl and acetoin. In some products, certain species 
are used together to produce desired product character-
istics. In yogurt fermentation, Streptococcus thermophi-
lus and Lactobacillus bulgaricus are inoculated together. 
Both produce lactic acid, but together, this is better 
than each lactic acid because Lactobacillus sp. liberates 
valine through proteolysis, which stimulates the growth 
of Streptococcus sp. [33]. Streptococcus sp. produces 
the format required by Lactobacillus sp. Acetaldehyde 
and diacetyl are important flavoring volatiles produced 
to give yogurt its characteristic taste, with Lactobacil-
lus being the main producers of these substances. The 
absence of the enzyme (alcohol dehydrogenase) in both 
species, which would convert acetaldehyde to ethanol, 
means the final product is yogurt-flavored and not an 
alcoholic drink [33].

In fermented meats such as salami, Staphylococcus 
carnosus and Staphylococcus xylosus are often added 

with a starter culture that produces lactic acid. Unusu-
ally, these organisms are not very tolerant of acids, so 
they do not grow when the pH begins to drop. How-
ever, the enzymes they produce are more tolerant, and 
essentially, the bacteria act as producers of enzymes 
that contribute to the breakdown of fats and proteins 
and, therefore, produce bioflavor compounds. Another 
important group in bioflavor production is yeast. Yeast 
is known for its alcohol production, but the proteolytic 
and lipolytic activities of certain species produce a vari-
ety of flavor compounds. Yarrowia lipolytica can break 
down tributyrin, producing butanoic acid, which has a 
cheese-like odor, and this is believed to be an important 
part of the development of bioflavor in several cheese 
varieties. Fungi also have proteolytic and lipolytic 
activities, which give them certain characteristics. Peni-
cillium roqueforti imparts a characteristic ’blue’ taste to 
cheeses such as Stilton and Roquefort [30].

Cheese products are a good example of products where 
the development of sensory characteristics is highly 
dependent on the balance of microorganisms present 
[29]. After initial fermentation with a starter culture, the 
cheese undergoes a ripening period, the length of which 
varies depending on the type of cheese. It is during this 
period that cheese becomes a complex dynamic ecosys-
tem with the growth of many different microorganisms 
that contribute to the development of the product’s fla-
vor. In Stilton cheese, Lactococcus lactis and Penicillium 
roqueforti are two starters added by manufacturers. How-
ever, the final microbiota of mature cheese after 12 weeks 
contained many other bacteria and yeasts. Some of them 
have been proved to influence the characteristics of the 
flavors formed. Penicillium is added to allow the develop-
ment of the characteristic flavor of blue cheese, primar-
ily through the production of a methyl ketone. In model 
cheese studies using controlled flora composition, the 
presence of Yarrowia lipolytica with Penicillium roque-
forti has been shown to enhance blue cheese flavor devel-
opment through increased ketone production, compared 
to using Penicillium roqueforti alone, and produced sen-
sory effects. It has characteristics equivalent to those of 
mature cheese that are not shared by the mold alone. 
This may be due to the highly lipolytic activity of yeast, 
which releases free fatty acids, which the fungus can 
then convert into ketones. Thus, the complete product 
characteristics desired by consumers may depend on the 
presence of these yeasts. However, these species are only 
present through chance introduction during processing, 
and therefore, their presence may vary from one batch to 
another, causing variability in the product [32].

Bioflavors resulting from microbial fermentation, 
such as monoterpenes, have been reported to show bio-
logical activity in vitro and in vivo against certain types 
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of tumors and also have antimicrobial activity [34]. Ter-
pene alcohol bioflavor compounds such as α-terpineol 
show antitumor and anticancer activity by reducing the 
expression of the nuclear transcription factor NF-B3 
without undergoing lethal synthesis in the body’s 
metabolism, making it safe for human consumption. 
Basidiomycete fungi such as Ischnoderma benzoinum 
have the potential to be a drug against influenza viruses 
and produce a spicy taste in submerged fermentation. 
This fermentation process follows two metabolic path-
ways in which L-phenylalanine is converted into two 
flavor compounds: one benzaldehyde (spicy taste) and 
3-phenyl propanol (floral roselike aroma) [26].

Flavor production by microbial fermented food
Several microbes are used to ferment food and beverages 
to improve and even create new flavors different from the 
raw materials. Microbial fermentation produces flavor 
compounds through the metabolic activities of micro-
organisms such as bacteria, yeasts and fungi. During 
fermentation, these microorganism’s catabolite the raw 
materials and transform them into a variety of chemical 
substances, including flavor compounds. The types of fla-
vor compounds produced can vary widely depending on 
the strain of microorganism, the substrate they are fer-
menting and the conditions under which fermentation 
takes place.

Some of the common metabolic pathways that lead to 
flavor compound production are carbohydrate, lipid and 
protein metabolism. Glycolysis pathway will lead carbo-
hydrate into glucose production, which is the source to 
produce alcohols, organic acids and esters (Fig.  1). For 
instance, yeast fermentation of glucose can produce 
ethanol and carbon dioxide, as well as other compounds 
that add flavor to bread, beer and wine. In addition, the 
hydrolysis of fatty acids can result in the formation of 

short-chain fatty acids and other metabolites that con-
tribute to flavor such as methyl ketone and lactone. 
Moreover, catabolism products of protein, amino acids, 
present in the substrate form a wide range of flavor com-
pounds, such as esters, alcohols and organic acids, which 
contribute to the taste and aroma of fermented foods 
(Fig. 2).

The production of flavor compounds is influenced 
by the microbial species involved, fermentation condi-
tions like temperature, pH, oxygen availability and the 
substrate used. Fermentation can thus be tailored by 
selecting specific microbial strains and optimizing fer-
mentation conditions to enhance the production of 
desired flavor compounds [35, 36].

The characteristic of fermented food or beverage serves 
the authentic flavor of each region. By the local com-
munity, some fermented products that are specific to an 
area, such as oncom, peuyeum (tapai), sticky tape, tauco, 
brem, shrimp paste, dadih, soy sauce, tempoyak, pickles 
and salted eggs, are used as business profit to be lead as 
souvenirs. Figure  1 shows local food and beverage fer-
mentation in Indonesia. The flavor of fermented products 
gives a sense of a yearning desire for hometown food; 
therefore, many people buy these products. This shows 
that bioflavor from fermented food can have a socioeco-
nomic advantage. In addition, the fermentation of food 
by bioflavor microbes has benefits such as increasing the 
nutritional value of food products and maintaining the 
food supply [21, 37–39].

Before 2000, studies of bioflavors explored the utiliza-
tion of microbes to improve the taste of nourishment. 
The research motive in flavor branched out in the fol-
lowing years, even though there are still reports of find-
ings of novel indigenous isolates that are characterized as 
flavored bacteria, such as Lactobacillus spp. from tradi-
tional beverages, Dadih, in Indonesia [11], Kazachstania 

Fig. 1 Distribution of biodiversity fermented foods and beverages in Indonesia
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Sinensis f.a., sp. nov from Thailand fermented fish [40]. 
Commencement in 2000, the accomplishment of tech-
nology to control the production of bioflavors began to 
be investigated. One of the research projects on the pres-
ervation technology of fermented food products to con-
trol microbial growth is the canning of the Mandai; the 
results of the research showed the flavor microbes can 
survive so that the Mandai commercialization process 
can be expanded [2]. Since microbial metabolism affects 
the flavor of the fermented product, it is a challenge to 
maintain the bioflavor content of fermented products.

The challenge for bioflavor research has developed 
regarding taste, added nutritional value, food preserva-
tion and the effects of bioactive compounds on health. 
Several research reports regarding the functional prop-
erties of Indonesian traditional foods and beverages 
fermented by bioflavor microbes (Tabel 1). Fermented 
products that have been explored regarding the benefits 
and active ingredients are Tempe. On the other hand, 
many traditional foods have not been disclosed regarding 
the health benefits of active ingredients. Moreover, the 
microbes responsible for pet shrimp fermentation have 

not been reported [39]. In addition, many active ingre-
dients and bioflavor compounds from fermented food 
products have not been reported.

Therefore, the current research challenge is to study the 
identification of the active compounds and their benefits 
produced during fermentation by bioflavor microbes. 
A comprehensive study of a topic is essential to finding 
the breakthrough of a problem. It is hoped that bioflavor 
research will be reported in the scope of techno-eco-
nomic socioeconomic research apart from scientific 
research. Nowadays, research innovations to meet biofla-
vors’ needs, namely the production of roselike essential 
oil by mushrooms, have been reported [41]. Hereafter, 
the production and purification of bioflavor active com-
pounds by fermentation on an industrial scale can be car-
ried out to create unique bioflavors that benefit health.

The recombinant DNA technology applied 
on microbial bioflavor
Since 1970, recombinant DNA technology has played 
an important role in the biotransformation of flavor by 
microorganisms. For instance, this technology inserts a 

Fig. 2 Macromolecules catabolism in bioflavor transformation
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foreign gene into the vector and makes cloning to pro-
duce a specific target flavor. Many research studies were 
well documented [42–44]. The recombinant Brettano-
myces anomalus β‐glucosidase increased benzyl alco-
hol, eugenol, linalool and salicylate compared to wild 
types of other microorganisms [45]. Further, the poten-
tial of an engineered strain of Ashbya gossypii can pro-
duce limonene from xylose after the limonene synthase is 
overexpressed together with the native HMG1 gene [46]. 
Remarkably, vanillin, the common natural flavoring, is 
widely used in bioengineering. The study of overexpress-
ing the pchF gene encoding vanillyl alcohol oxidase effec-
tively induced 5.94-fold at 0.5 g/L vanillin [47].

A critical factor affecting the success of the recombi-
nant DNA was well described by [48]. They highlighted 
that the expression of enzymes in E. coli was influenced 
by the sequences of genes involved in different stages of 
expression, the transcriptional promoter, the stability of 
the vector in host cells and the characteristics of the envi-
ronment, such as the manipulation of culture media. At 
the same time, bioengineering of yeast such as S. cerevi-
siae, both the host strain’s manipulation and precursors’ 
manipulation, was needed to produce flavors [49]. Fur-
ther, the recombinant enzymes needed for aroma (terpe-
noid) production in the mevalonate biosynthesis (MVA) 
pathway of S. cerevisiae [49, 50].

Lactic acid bacteria, which have a long history of fer-
mented food, have the potential to be developed with 
recombinant DNA technology [51]. Most of them were 
used for biotherapeutic treatment. In comparison, the 
aroma from fermented products such as Indonesian local 
indigenous fermented food is diverse and can be used as 
a functional bioflavor. The recombinant DNA technology 
approach will assist in the transformation process [43]. 
It highlighted that the opportunity to use recombinant 
DNA technology in flavors would lead to a newly discov-
ered pathway, improved quality and quantity of flavor, 
and new enzyme formation. Thus, it is both a challenge 
and an opportunity to capitalize on it.

The role of biotechnology in bioflavor 
development
Today, ’natural’ ingredients related to food are used to 
meet consumer needs. The label ’natural’ (’natural’) is a 
powerful label used to market products that consumers 
need. ’Natural’ products are believed to be safe for con-
sumption. These products are included in GRAS (gener-
ally recognized as safe), so they are safe for consumption. 
Production of flavor compounds from plant extracts, 
biocatalyst processes and the application of genetic engi-
neering to plants, as well as gene expression into bacterial 
or yeast cells, have started to be carried out commercially. 

Some commercially produced flavor compound products 
are given in Table 1.

The flavor industry mostly carries out the extrac-
tion and isolation of flavor compounds from plants to 
obtain’ natural’ flavor compounds. These flavor com-
pounds have a higher economic value compared to 
synthetic flavor compounds. Difficulties in extraction 
or distillation occur when the content of flavor com-
pounds is low, so the production of flavor compounds 
cannot be carried out by simple extraction and distilla-
tion methods. Thus, a higher-cost technology is needed 
to extract and isolate these flavor compounds. The 
development of science and technology leads to genetic 
engineering techniques for plants to produce higher-
flavor components or express the genes responsible for 
producing these flavors so that they can be produced 
microbiologically with high productivity. Modern 
molecular biology and process engineering techniques, 
such as gene expression, mutagenesis, biocatalysts 
using microbial cells (whole-cell biocatalysis) and other 
engineering processes, can produce more biocata-
lytic processes for producing flavor compounds [52]. 
Industrial biocatalysis applications to produce ’natural’ 
flavor compounds can be carried out to produce vanil-
lin, Ύ-decalactone, carboxylic acids, C6 aldehyde com-
pounds and alcohol compounds, ester compounds and 
2-phenylethanol. In their review, Convetti et  al. [53] 
discuss the link between biotechnology and the indus-
trial application of these flavor compounds.

Flavor compound products, through processes using 
microbial cells or genetic engineering, compete with pro-
duction processes by direct extraction from plants. Some 
of the considerations required for the application of 
biotechnology in the production process of flavor com-
pounds are a combination of scientific and commercial 
considerations, such as (a) high-value flavor compounds 
contained in plants that cannot be carried out by clas-
sical extraction or distillation methods, (b) hazards of 
chemosynthesis products, consumers feel safer consum-
ing ’natural’ products. For example, in Europe, 90% of 
flavor compounds used in beverage products are ’natural’ 
compounds (80% in the USA), (c) highly selective bio-
catalysts (chemo-, region-, stereo-) and (d) biocatalysts 
are accepted as ’natural’ processes (white biotechnology) 
[54].

Glutamate in the form of monosodium glutamate 
(MSG) is one of the most widely produced flavor enhanc-
ers and is commonly produced in various countries. Most 
of these products are produced microbiologically by fer-
menting sugar-containing ingredients into glutamate 
using bacteria (Corynebacterium glutamicum). In Indo-
nesia, several MSG companies use molasses as a sub-
strate in the glutamate production process. With genetic 
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engineering and engineered growth medium, these bac-
teria can produce glutamate in large quantities.

Many flavor compounds are being studied to be devel-
oped and applied to industrial processes. Vanillin is 
one of the flavor compounds that can be developed for 
microbiological production. Vanillin can be produced by 
extracting vanilla pods. Extraction of vanillin from vanilla 
pods requires a high cost, so synthetic vanillin produc-
tion is still high. Annually, more than 10,000 tonnes of 
vanillin are chemically produced. This is triggered by the 
demand for vanillin, which continues to increase yearly. 
According to the 2012 Convetti et al. [53], vanillin flavor 
was in the top 10, and there was an increase in use (9%) 
from 2010 for beverage products This 9% increase is the 
same as the increase in apple flavor, which is the highest 
compared to other flavors used for drinks.

As a result of the high and increasing demand for 
vanillin flavor, the microbiological vanillin production 
business continues to be studied and developed so that 
vanillin production costs can be cheaper. At least the 
production costs are the same as the chemical synthe-
sis process. The biotechnological production process is 
based on the bioconversion of ferulic acid, isoeugenol 
or eugenol by applying genetically engineered bacteria, 
fungi or other microorganisms. Microorganisms that 
are being studied intensively are Amycolatopsis sp. and 
Pseudomonas sp. Bacteria Pseudomonas sp. can convert 
eugenol to vanillin via ferulic acid by interfering with the 
vdh (vanillin dehydrogenase) gene, and these bacteria can 
convert eugenol to vanillin. Eugenol is a cheap and easy-
to-obtain substrate in Indonesia. Because this process 
involves genetically modified organisms (GMOs), inten-
sive research is needed so that the resulting vanillin prod-
uct is safe for consumption.

Safety of bioflavor products from biotechnology
Health is still a priority for consumers when choos-
ing food. The use of natural ingredients in food pro-
duction has a market share that continues to increase 
yearly. Likewise, the use of ’natural’ flavor compounds 
is still the people’s choice before choosing synthetic fla-
vor compounds. Consumer demand for natural flavor 
compounds is one of the factors triggering the increas-
ing desire of the beverage industry to use natural flavors 
in their products [53] Biotechnology processes that can 
be applied in the industrial process of flavor production 
include direct extraction and isolation from plants, iso-
lation of flavor compounds from the fermentation pro-
cess and the use of genetically modified microorganisms 
to produce flavor compounds. Extraction and isolation 
of flavor compounds directly from plants or through a 
fermentation process is a process that is commonly car-
ried out and has even been carried out traditionally for 

generations. Thus, this process can produce flavor com-
pounds that are safe for the food industry and included in 
GRAS. Combining the fermentation process and extract-
ing flavor compounds can increase the production of fla-
vor compounds. In this case, the fermentation process 
can maximize the recovery of flavor compounds during 
the extraction process.

Microbiologically produced flavor compounds using 
GMOs are still being debated between the pros and 
cons. However, the development of biotechnology that 
leads to molecular biology is so rapid nowadays. This 
development led to transgenic foods or foods containing 
transgenic ingredients, including flavors. Flavor product 
development with processes that use GMOs needs to 
consider the health aspects of the product. The wise use 
of technology will result in a cheaper production process 
and a safer product.

Functional bioflavor constraints
The paradigm shift and acceptance of functional flavors 
by a broad spectrum of consumers provide the opportu-
nity to create unique products. The biggest obstacle to 
using functional flavors is combining the concentration 
of components to provide the desired properties with the 
appropriate taste attributes. The sensitivity of human sen-
sory organs to flavor attributes is not always consistent 
with active physiological abilities obtained at the same 
level. Often, our sensory threshold tendencies are much 
lower than the concentrations required for the active 
components to provide their benefits. Selecting certain 
flavor components and understanding with certainty 
the characterization of the activity of flavor components 
is a key factor in obtaining the physiological properties 
of functional flavors. Things that will be suggested when 
having to replace food additives that are commonly used 
with alternative food additives are:

1. Alternative food additives should come from natural 
sources (extracted from nature).

2. Alternative food additives are safe for the health of 
the human body. They are not harmful if consumed 
in the long term. (They are easily digested by the 
digestive system and do not leave harmful residues 
that can accumulate in the body.)

3. The alternative food additives is stable in food pro-
cessing, packaging and storage.

4. Food additives should have functional added value 
in that besides improving sensory quality, it can also 
increase nutritional value and maintain health and 
fitness when consumed.

Bioflavor compounds (aroma and taste) are very 
important and determine the development of the 
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food and beverage industry. Bioflavor compounds 
are included in food additives that improve the sen-
sory quality of food. Bioflavor compounds are divided 
into two, namely natural bioflavor compounds and 
synthetic bioflavor compounds. In recent decades, 
natural bioflavors have been preferred due to con-
sumer concerns about the dangers of synthetic bio-
flavors on health [52]. Natural bioflavor compounds 
can be obtained by extracting and isolating bioflavor 
compounds from plants, but this process often expe-
riences several obstacles, namely high costs and low 
extraction yields [55]. The development of science and 
technology has led to molecular biology techniques 
and process engineering using microbial cells (whole-
cell biocatalysis), which can produce more effective 
and efficient bioflavor compounds. The natural flavor 
products produced from this process are usually called 
flavors. One of the important flavor compounds is 
2-phenylethanol [52].

The microbes that are often used to produce biofla-
vors are yeast. This is because yeast is a microbe that 
can convert simple carbohydrates into various complex 
molecules, including bioflavor compounds, through 
enzymatic catalytic reactions [42]. Various types of 
yeast are known to produce bioflavor compounds, one 
of which is Kluyveromyces marxianus, capable of pro-
ducing 2-phenylethanol [56]. 2-Phenylethanol is an 
aromatic alcohol. This compound is naturally present in 
the essential oils of various flowers, for example, roses, 
daffodils, jasmine and lilies [52]. According to Fabre 
et  al. [56], 2-phenylethanol tastes sweet and smells 
like roses. As a natural flavor, 2-phenylethanol can be 
applied to food products, such as soft drinks, candy, ice 
cream, gelatin, pudding, chewing gum and cookies [57]. 
2-Phenylethanol can be produced from fermentation by 
various yeasts, including Saccharomyces cerevisiae [58], 
Kluyveromyces marxianus [59], Pichia fermentans [60], 
Zygosaccharomyces rouxii [61], Yarrowia lipolytica 
[62]. The advantages of production carried out by yeast 
are: (1) The product is a natural product whose safe use 
is permitted for food, (2) the raw material is more cost-
efficient when compared to extracts from plants, (3) the 
production process is short, and (4) it is easy to control 
in the production process [63].

One of the yeasts chosen to produce 2-phenyletha-
nol is Kluyveromyces marxianus. This is nonpathogenic 
yeast with a high potential to produce biotechnology 
products. It has a high specific growth rate and can use 
a broad spectrum of substrates [64]. According to Fon-
seca et  al., K. marxianus is also a microbe with a safe 
status (Generally Regarded as Safe/GRAS). Production 
of 2-phenylethanol by yeast, including K. marxianus, is 
usually carried out by the biosynthesis pathway from 

L-phenylalanine catabolism via the Ehrlich pathway 
[65]. The resulting product, namely 2-phenylethanol, 
can poison the K.marxianus cells themselves. Fabre 
et al. (1998) [56] stated that the growth of K.marxianus 
cells was inhibited at a concentration of 2  g/liter. 
However, the sensitivity to 2-phenylethanol for each 
K.marxianus strain was different. Several strategies 
have been carried out to increase the production of 
2-phenylethanol by K. marxianus to make it more 
effective and efficient, including screening superior 
strains [66], optimizing medium conditions [67], using 
in situ techniques: product removal (ISPR) to overcome 
cytotoxicity [59] or by carrying out genetic engineering 
to increase 2-phenylethanol production [68].

Isolation of bioflavor compounds
One of the stages that need to be considered in flavor 
production is the flavor isolation technique from other 
fermented products. The basic isolation methods that 
are often used are extraction, distillation and absorp-
tion. Currently, several methods have been developed to 
reduce flavor damage resulting from the interaction of 
flavor compounds with solvents. In general, flavors are 
composed of volatile compounds, so the extraction of fla-
vor compounds can be done using the headspace method 
[69]. The principle of the headspace method is humidity 
of the compound, which can be conduct to replace the 
fermentation product in a closed bottle and then heat it 
to a certain temperature so that the volatile compounds 
can be separated and isolated [70].

Another method for isolating valuable organic com-
pounds is to use the pervaporation method [71]. The 
advantage of pervaporation is that it can separate small 
amounts of volatile compounds in a mixture. Pervapo-
ration is an acronym for permeation and evaporation, 
so this method requires a membrane to separate flavors 
from other compounds. Some examples of membranes 
used to separate aromatic compounds are polymeric 
membranes (polyvinyl alcohol, polyimide, polydimethyl-
siloxane), inorganic membranes (zeolite, silica and 
metal–organic framework), 2D membranes (graphene 
oxide, metal–organic framework and mixed-matrix 
membrane) [72]. The polymeric membrane is the cheap-
est pervaporation technology among others, so it is 
widely used in the scale-up industry but has weaknesses 
in terms of stability. The umami flavor which is domi-
nated by peptide compounds can be purified using the 
nanofiltration membrane method [71].

In food industry, supercritical fluid extraction (SFE) 
is general method to purified natural compound. The 
basic principle of this method is the extraction of dis-
solved substances using high pressure. By passing high-
pressure  CO2 through fermented sticky rice, the aroma 
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of vinegar was isolated [73].  CO2 gas under high pressure 
will become liquid so that it can extract volatile com-
pounds in a fermented product. The choice as a solvent 
in the SFE method for food products is because this com-
pound is inert, GRASS and easy to obtain [74].

Techniques for analysis and quantification 
of bioflavor compounds resulting from microbial 
fermentation
A number of instruments and methods are frequently 
employed in the identification and evaluation of biofla-
vors. The practice of identifying and analyzing chemicals 
produced by microorganisms during fermentation or 
other metabolic processes is known as bioflavor detec-
tion. It is crucial to remember that the particular flavor 
compounds of interest, the characteristics of the sample 
and the degree of detail needed for analysis all influence 
the choice of detection instrument.

Different analytical approaches are used to identify and 
quantify volatile chemicals that contribute to the overall 
flavor profile to detect bioflavors created by microbes. 
The analysis aims to analyze flavor compounds that play 
a role in food senses, both aroma and taste. The science 
related to this was previously known as sensomics. Sen-
somics analyzes the composition of aroma compounds 
that play a sensory role for analyzed compounds using 
gas chromatography–mass spectrometry (GC–MS) [75]. 
Samples are taken at critical points in the development or 
fermentation processes of microbial cultures, which are 
cultivated under well-regulated conditions [76]. Com-
pounds that play a role in the sensory input of a fermen-
tation product are called character impact compounds 
(CIP). CIP levels in the fermentation product in ques-
tion are then accurately quantified using the stable iso-
tope dilution analysis (SIDA) method. After knowing the 
CIP and its levels in the fermentation product being ana-
lyzed, then the levels that have been measured are mixed 
(recombination).

CIP analysis can be done using a gas chromatogra-
phy–olfactory (GC–O) or a gas chromatography–mass 
spectrophotometer–olfactory (GC–MS–O). GC–MS–O 
is better used in bioflavor analysis because apart from 
determining CIP, it can also identify the type of biofla-
vor compound using MS connected to GC. At the same 
time, the compounds identified by MS were also analyzed 
for their odor descriptions by olfactometer. This is done 
by dividing the 2 end branches of the capillary column 
in the GC oven: one toward the MS and one toward the 
olfactometer. An olfactometer is used to smell the com-
pounds coming out of the GC column, equipped with a 
wet airflow so that the assessor’s nose, which describes 
the smell.

Using GC–MS–O, we can find the type of odor and 
target bioflavor compounds. To find out what types of 
compounds play a role in determining the aroma of a 
fermentation product, the aroma extract dilution analy-
sis (AEDA) technique is carried out. This technique is 
carried out by analyzing the initial aroma extract with 
GC–MS–O or GC–O. After that, the extract was diluted 
twice and then analyzed by GC–MS–O or GC–O, 
and so on until there is no more odor coming from the 
olfactometer.

Untargeted bioflavor compounds also can be identified 
with the initial stage of extracting volatile compounds 
based on their type. In general, 2 extraction principles 
can be used based on the solubility and volatility of fla-
vors in fermentation products. Typically, methods like 
dynamic headspace extraction or solid-phase microex-
traction (SPME) are used to remove volatile chemicals 
from the samples [77]. After being extracted, the volatile 
substances are introduced into a gas chromatography 
(GC) apparatus, where their volatility and other chemical 
characteristics are used to separate them. This method 
considers that it can extract pure flavors and does not 
involve nonvolatile compounds or matrices in the extract 
obtained. The extract must be concentrated or reduced 
using nitrogen gas if it contains solvent. The concen-
trated bioflavor extract can then be analyzed by GC–
MS. The separated chemicals are then introduced into a 
mass spectrometer, where their mass-to-charge ratios are 
determined by ionizing and measuring them. MS gives 
details regarding each compound’s identity and abun-
dance. To process the GC–MS data, identify substances 
using mass spectra and calculate their concentrations, 
sophisticated software tools are used [75]. By comparing 
a compound’s mass spectra with databases, it can be rec-
ognized, and using reliable standards can help with con-
firmation. On the other hand, high-performance liquid 
chromatography HPLC can be used to identify, quantify 
and segregate nonvolatile compounds in a sample. The 
examination of bioflavors that are challenging to evapo-
rate often makes use of it.

Another approach of bioflavor compounds analysis 
resulting from microbial fermentation is by using an LC–
MS–MS (liquid chromatography–mass spectrophotom-
eter–mass spectrophotometer) instrument. Nonvolatile 
compounds contained in the extract are separated using 
an LC instrument. The respective compounds that have 
been separated are analyzed by MS first. In MS, the com-
pound is first ionized, and then, the mass ion produced 
is selected; only the mass of the target compound, called 
the parent ion, is passed to the next stage. The parent 
ion is then passed to the collision cell, where the ioniza-
tion process occurs. The formed ions are called daughter 
ions and then passed to the second MS. In the second 
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MS, the daughter ion, the parent ion of the target bio-
active compound, is selected. If the target compound in 
question is present in the extract, the target compound’s 
parent ion and daughter ion will be detected and can be 
quantified. LC-HRMS (liquid chromatography–high-
resolution mass spectrophotometer) is used to determine 
the molecular mass with a more accurate detection limit, 
making it easier to identify bioflavor compounds. Sup-
pose a new compound has not been identified in the LC–
MS database. In that case, the compound is isolated until 
a pure compound is obtained and then identified using 
HRMS or NMR spectroscopy.

Utilizing the mass-to-charge ratio of a substance to 
identify and measure, it is possible with mass spec-
trometry [78, 79]. It frequently works in tandem with 
chromatography to provide thorough analysis. In 
sensory evaluation, real panelists taste and assess a 
product’s flavor characteristics [80]. This subjective 
method is crucial to comprehending how flavors are 
perceived generally. Electronic gadgets with sensors 
designed to simulate human smell are called e-nose 
devices [81, 82]. In order to offer a flavor profile, they 
are able to identify and examine volatile chemicals in 
a sample. Compounds can be identified and measured 
using NMR spectroscopy according to their nuclear 
magnetic characteristics. It offers comprehensive 
structural details about the molecules present in a 
sample [83].

Direct thermal desorption is another approach for 
bioflavor analysis which is simple and rapid sample 
preparation. It does not require any solvent use. It is 
based on sparging volatiles from sample matrix and 
transferring them onto the chromatographic column. 
Heat treatment is usually applied to a matrix to extract 
volatile compound from sample. A cryofocussing unit 
or cold trap can be used to focus the volatiles at the 
head of the column [84].

Instrumentally analyzed volatile profiles may also be 
combined with sensory profiles. Usually, a trained sen-
sory panel evaluates the most important sensory prop-
erties of a product in sensory laboratory (ISO 8589) 
conditions [85, 86], e.g., following a general sensory 
profiling protocol. When the sensory profile is con-
nected to instrumental analyses, it is important to keep 
the sample preparation method as similar as possible 
in both methods. Different data matrices are relatively 
easy to combine, using multiregression statistical meth-
ods to identify the key volatile compounds contributing 
to smell or flavor [85]. However, it is necessary to deter-
mine the target, such as orthonasal odorants, retrona-
sal odorants or flavor compounds, when selecting the 
correct method of analysis for instrumental measure-
ment and human sensory evaluation.

Certain genes linked to the synthesis of bioflavors 
can be found using PCR methods. This molecular biol-
ogy method is particularly helpful for researching the 
genetics of bacteria that produce flavor [87]. ELISA 
is an immunological technique that uses antibod-
ies to identify substances, often known as antigens. It 
is adaptable enough to be used for taste component 
detection. The thorough examination of tiny mole-
cules, or metabolites, in a biological sample is known 
as metabolomics [88]. It can be used for flavor analy-
sis and offers information into the metabolic profile of 
bacteria. The microbial population in a sample can be 
examined using next-generation sequencing methods 
[89]. This facilitates comprehension of the variety of 
microbes involved in flavor creation.

Conclusion
The study of flavor has revealed the intricate interplay 
of sensory experiences with the key elements of flavor 
(smell, taste and mouth sensation), which are influ-
enced by complex chemical compositions and inter-
actions with receptors in sensory organs, ultimately 
transmitting signals to the central nervous system. 
Flavor compounds, crucial to the food and beverage 
industry, are categorized into indigenous and inten-
tionally added compounds. As consumer concerns 
about safety and health rise, bioflavor compounds are 
gaining popularity, driving research into more econom-
ical production methods, such as biocatalyst processes. 
Microorganisms are crucial in shaping these traditional 
foods’ flavors and health-enhancing properties. The 
production of flavors through microbial fermentation 
showcased economic and cultural significance, espe-
cially in the cesia. It highlighted flavor’s potential to 
enhance socioeconomic development by commercial-
izing unique, locally specific fermented products. Bio-
technology’s role in flavor development was discussed, 
emphasizing the growing demand for ‘natural’ flavor 
compounds. It highlighted various approaches, includ-
ing genetic engineering, to produce high-value flavor 
compounds from natural sources, further blurring 
the lines between synthetic and natural flavors. Safety 
considerations for bioflavor products derived from 
biotechnology were addressed, emphasizing the impor-
tance of ensuring that GMO-based processes yield safe 
and consumer-friendly products. Finally, it touched 
upon functional flavors, showcasing their potential to 
enhance sensory experiences and confer health ben-
efits. The challenge lies in balancing taste attributes 
with the desired physiological properties, ensuring con-
sumers reap the full benefits of these functional flavors. 
Finally, this review provides a comprehensive overview 
of the multifaceted world of flavor, from its sensory 
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components to its production through microbial fer-
mentation and biotechnology. It emphasizes the poten-
tial for flavors to enhance culinary experiences and 
contribute to health and well-being. Future research in 
this field promises further innovations in flavor science 
and technology.
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