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Abstract 

The antiobesity effects of catechin functional kimchi (CFK) were studied in C57BL/6 mice with high-fat diet (HFD)-
induced obesity. We prepared four types of kimchi: commercial kimchi (CK), standard kimchi (SK), green tea functional 
kimchi (GFK), and CFK. CFK decreased the adipo-/lipogenesis-related genes of CCAAT/enhancer binding protein α (C/
EBPα), peroxisome proliferator-activated receptor-γ (PPARγ), and sterol regulatory element-binding protein-1 (SREBP-1) 
in the liver and epididymal tissues (p < 0.05). On the other hand, CFK showed the highest lipolysis-related gene expres‑
sion of hormone-sensitive lipase (HSL) and β-oxidation related gene expression of carnitine palmitoyltransferase 1 
(CPT-1). CFK produced the lowest inflammation-related mRNA expression of tumor necrosis factor-alpha (TNF-α) 
and interleukin-6 (IL-6) among all groups in the epididymal tissues (p < 0.05). In addition, UPLC–Q-TOF-MS showed 
that CFK is composed mainly of 39 active compounds, e.g., epigallocatechin gallate (EGCG), catechins, apigenin, myri‑
cetin, kaempferitin, rutin, quercetin, and other substances with anti-inflammatory, blood cholesterol reduction, blood 
sugar reduction, body fat reduction, antioxidant, and anticancer functions. Thus, CFK exhibited an antiobesity effect 
through its modulation of lipid metabolism and active compounds.
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Introduction
Fermentation has been one of the ways to store food for 
a long time, but interest in fermented foods is increas-
ing around the world as research reports that it improves 
the taste and functionality of foods [1]. Among these, 
kimchi is a traditional Korean fermented food contain-
ing probiotics, prebiotics, and postbiotics [2]. It is made 
using Baechu cabbage and radish as the main ingredi-
ents and adding sub-ingredients such as garlic, ginger, 
and red pepper  powder [3]. The origins of kimchi are 
estimated to be at least 2000  years ago and are known 
to have originated from salting vegetables in the winter 
when fresh vegetables were not available [4, 5]. Kimchi, 

which is simply salted vegetables, was manufactured until 
the end of the Three Kingdoms Period (approximately 57 
BC-667 AD) and is estimated to have been consumed as 
a side dish [5]. First, kimchi was made using radish as the 
main ingredient, and later it was made using cabbage and 
red pepper powder. As different ingredients began to be 
mixed, the current form of kimchi began to appear in the 
late seventeenth century [6].

Kimchi uses a variety of vegetables, so it has a high 
content of vitamins, minerals, and dietary fiber [7], and 
contains various functional ingredients such as cap-
saicin, allyl compounds, and chlorophyll [6]. Kimchi 
provides important nutrients in the daily lives of Kore-
ans and is related to maintaining health [8]. Research 
has been reported on various health functionalities of 
kimchi, including intestinal health [8, 9], antioxidant 
and anti-aging [10, 11], plasma lipid suppression and 
antiobesity [12–15], and immune-enhancing [8] effects. 
Isothiocyanate, indole-3-carbinol, and allyl sulfur com-
pounds (allicin, diallyl sulfide, etc.), beta-sitosterol, 
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ascorbic acid, carotenoids, flavonoids, tocopherol, sele-
nium, dietary fiber, polyunsaturated fatty acids, etc., 
found in kimchi has been shown to appear due to func-
tional substances [16, 17].

The ingredients of kimchi, especially the types of 
subingredients, fermentation temperature, and vari-
ous conditions, affect the taste, characteristics, fer-
mentation, and functionality of kimchi [3, 5]. It has 
been reported that kimchi using Amtak baechu cab-
bage [18] and organically cultivated baechu cabbage 
[19] has increased anticancer effects. It was confirmed 
that kimchi using mistletoe extract, a functional sub-
stance, had an enhanced anticancer effect compared to 
regular kimchi [20]. In addition, the antiobesity effect 
increased in kimchi containing green tea as subingredi-
ent [21], and the antiobesity effect was also confirmed 
to be significantly enhanced in kimchi containing cat-
echin and lactic acid bacteria, the active ingredients of 
green tea [22]. Kimchi using mixed strains as a starter 
had excellent taste and showed high health functionali-
ties such as antioxidant and anticancer properties [23]. 
Kimchi using lactic acid bacteria isolated from kimchi 
as a starter also showed excellent anti-obesity effects 
[8]. Therefore, subingredients play an important role in 
determining the functionality of kimchi.

In this study, we investigated the effects of CFK on 
lipid accumulation and antiobesity in high-fat diet 
(HFD)-fed obese mice. We investigated the lipid accu-
mulation and antiobesity effects of commercial kimchi 
(CK), standard kimchi (SK), green tea functional kim-
chi (GFK), and catechin functional kimchi (CFK) in 
high-fat diet (HFD)-fed obese mice. It was confirmed 
through real-time quantitative polymerase chain reac-
tion (RT-qPCR), and the active compounds of kimchi 
were also studied.

Materials and methods
Sample preparation
Kimchi was prepared using Baechu cabbages and subin-
gredients purchased from Pungmi Kimchi Co. (Suwon, 
Korea). Kimchi was manufactured by implementing a 
slight adaptation of a previously documented recipe of 
naturally fermented kimchi [8, 14, 24, 25]. At the opti-
mal fermentation period (pH 4.0–4.3), the mixture was 
prepared by drying it using a freeze dryer (FD 5512, 
Ilshin BioBase CO., Korea) and then adding methanol. 
The admixture of kimchi and methanol underwent fil-
tration to isolate the methanol extract, which was then 
subjected to concentration by using a vacuum rotary 
evaporator (EYELA, Tokyo Rikakikai Co., Tokyo, Japan) 
[26].

Animal study
The mice study was obtained from the Institutional 
Animal Care and Use Committee of CHA University 
(IACUC-200050) [25]. The mice used in the experiment 
were purchased from Orient Bio (Seong-nam, Korea) 
as a 6-week-old C57BL/6 strain with body weight of 
20 ± 2 g and maintained at 23 ± 2  °C and 55 ± 5% relative 
humidity for a 12-h light–dark cycle. The experimen-
tal mice accommodated within a specific pathogen-free 
(SPF) room situated at the CHA Bio complex (Seong-
nam, Korea) and provided unrestricted access to a diet 
(DooYeol Biotech, Seoul, Korea) and water. The mice 
were classified into seven groups considering their body 
weights (n = 10 per group): AIN-93G diet group (Normal, 
Nor); 45% high-fat diet group (High-fat diet, HFD); 45% 
high-fat diet and 1.5% NaCl with same salinity as kimchi 
(Salt); 45% high-fat diet and 1.5 mg/kg/day CK (CK); 45% 
high-fat diet and 1.5  mg/kg/day SK  (SK); 45% high-fat 
diet and 1.5 mg/kg/day GFK (GFK); and 45% high-fat diet 
and 1.5 mg/kg/day CFK (CFK). After adaptation period, 
the groups administered the kimchi sample (CK, SK, 
GFK, and CFK) were orally administered 0.1 mL of kim-
chi extract for 16 weeks, and a 45% HFD was supplied at 
the same time [22, 25].

Measurement of mRNA expression levels
The total RNA of liver and epididymal tissues was iso-
lated using TRIzol reagent according to the manufactur-
er’s instructions (Invitrogen, Carlsbad, CA, USA). cDNA 
was obtained using oligo dT18 (Invitrogen), reverse tran-
scriptase buffer (Invitrogen), dNTPs (Invitrogen), reverse 
transcriptase (Invitrogen), and RNase inhibitor (Invit-
rogen). cDNA synthesis of isolated total RNA was per-
formed using a 2720 thermal cycler (Applied Biosystems, 
Foster, CA, USA). The synthesized cDNA was amplified 
using a thermal cycler Bio-Rad CFX-96 real-time sys-
tem (Bio-Rad, Hercules, CA, USA). The primers for 18s 
rRNA, CCAAT/enhancer binding protein α (C/EBPα), 
peroxisome proliferator-activated receptor-γ (PPARγ), 
sterol regulatory element-binding protein-1 (SREBP-1), 
lipoprotein lipase (LPL), diacylglycerol O-acyltransferase 
1 (DGAT), carnitine palmitoyltransferase I (CPT-1), hor-
mone-sensitive lipase (HSL), tumor necrosis factor-alpha 
(TNF-α), and interleukin-6 (IL-6) (Bioneer Corp., Dae-
jeon, Korea) Table  1 lists the primer sequences of each 
gene [27]. Relative mRNA transcription levels were cal-
culated using the 2−ΔΔCT formula [28].

Analysis of kimchi metabolites using UPLC–Q‑TOF MS
Freeze-dried kimchi sample powder from the 3rd week 
was homogenized with 80% methanol using a bul-
let blender (Next Advance, Troy, NY, USA). After 
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centrifuging, the supernatants were dried completely 
using a CentriVap concentrator SpeedVac (Labconco Co., 
Kansas City, MO, USA) and analyzed by ultra-perfor-
mance liquid chromatography coupled with quadrupole 
time-of-flight mass spectrometry (UPLC–Q-TOF MS). 
The kimchi samples were analyzed using a UPLC–Q-
TOF MS system (Xevo G2-S; Waters, Milford, MA, USA) 
[29]. The samples were injected into an Acquity UPLC 
BEH C18 column (2.1  mm × 100  mm, 1.7  m; Waters 
Corp., Milford, MA, USA), equilibrated with water con-
taining 0.1% formic acid (FA), and eluted with a gradi-
ent of acetonitrile containing 0.1% formic acid. A flow 
rate of 0.35  mL/min and a column temperature of 40℃ 
were employed. The eluted metabolites were analyzed 
by Q-TOF MS in positive electrospray ionization (ESI) 
mode. The desolvation flow rate and temperature were 
800 L/h and 400 °C, respectively, and the source tempera-
ture was 100℃. A TOF MS scan range of 50–1500 m/z, 
scan time of 0.2 s, and capillary and sampling cone volt-
ages of 3 kV and 30 V, respectively, were used. Leucine-
enkephalin ([M + H] = 556.2771), which was used as a 
lock mass, was infused at a flow rate of 0.35 mL/min and 
frequency of 10 s to ensure mass measurement accuracy 
of the metabolites analyzed by the instrument. A quality-
control (QC) sample prepared by mixing all samples was 
analyzed in triplicate before the start and after every five 
samples. The MS/MS spectra were obtained in the range 
of m/z 50 – 1500 using a collision energy ramp from 10 
to 30 eV.

The metabolites were identified based on online data-
bases (ChemSpider database in UNIFI, METLIN data-
base (www.​metlin.​scrip​ps.​edu), and human metabolome 
databases (www.​hmdb.​ca) [30].

Statistical analysis
The RT-qPCR experimental results are presented as the 
means ± standard errors (SE). Duncan’s multiple range 

tests and one-way analysis of variance (ANOVA) were 
used to determine the significant intergroup differences. 
The analysis was performed using IBM SPSS version 23 
(SPSS Inc.). The significance of the experimental results 
was tested at the p < 0.05 level.

Results and discussion
Effects of CFK on mRNA expression 
of the adipogenesis‑related genes
The antiobesity effect was confirmed by orally admin-
istering four types of kimchi (CK, SK, GFK, and  CFK) 
to C57BL/6 mice along with a 45% high-fat diet for 
16  weeks. Obesity is influenced by lipid metabolism 
through the regulation of adipo-/lipogenesis and lipolysis 
[31]. C/EBPα is a key contributor to the initial phases of 
adipogenic differentiation [32]. PPARγ plays an impor-
tant role in generating adipose tissue by differentiating 
preadipocytes into adipocytes. Furthermore, it is well-
established that there is mutual regulation between 
PPARγ and C/EBPα, which contributes to the promotion 
and maintenance of the state of adipocyte differentiation 
[33, 34]. The mRNA expression levels of adipogenesis-
related genes (C/EBPα, PPARγ) in the liver tissues were 
measured and showed a significant decrease in all the 
groups that were administered kimchi compared to the 
HFD group (Fig. 1A). The Salt group (4.86 ± 0.81) appears 
to have increased fat synthesis by increasing the expres-
sion of the C/EBPα gene compared to the HFD group 
(3.21 ± 0.47). It can be seen that salt intake through kim-
chi is different from simply administering salt, and this 
is thought to be due to the various minerals contained 
in the salt (solar salt, bamboo salt) used to make kimchi 
[11, 26]. The C/EBPα mRNA expression was 2.90-fold 
lower in the CFK group (1.11 ± 0.47) than in the HFD 
group (p < 0.05). PPARγ gene expression was also signifi-
cantly lower in the CFK group than in the HFD group. 
As a result of H&E staining analysis of liver tissues in the 

Table 1  Primer sequences of obesity-related genes used for RT‒qPCR in obesity through HFD-induced mice

Gene Forward sequence Reverse sequence

C/EBPα 5′-TGC TGG AGT TGA CCA TGT AC-3′ 5′-AAA CCA TCC TCT GGG TCT CC-3′
PPARγ 5′ -TTT TCA AGG GTG CCA GTT TC-3′ 5′-AAT CCT TGG CCC TCT GAG AT-3′
SREBP-1 5′-CGG AGA CAG GGA GTT CTC AG-3′ 5′-TGG GGG ATA TGC TCT ACC AG-3′
LPL 5′-CAG CTG GGC CTA ACT TTG AG-3′ 5′-CCT CTC TGC AAT CAC ACG AA-3′
DGAT1 5′-GCA GAC CGC GAG TTC TAC AG-3′ 5′-CTC ATG GAA GAA GGC TGA GG-3′
HSL 5′-AGA CAC CAG CCA ACG GAT AC-3′ 5′-CAT CAC CCT CGA AGA AGA GC-3′
CPT-1 5′-TAT CGC CAC CTG CTG AAC C-3′ 5′-TTG AAG GTG ACG AAG GTG GT-3′
TNF-α 5′-CAG​GCG​GTG​CCT​ATG​TCT​C-3′ 5′-CGA​TCA​CCC​CGA​AGT​TCA​GTAG-3′
IL-6 5′-ATG AAG TTC CTC TCT GCA A-3′ 5′-AGT GGT ATC CTC TGT GAA G-3′
18S rRNA 5′-TCG AGG CCC TGT AAT TGG AA-3′ 5′-CCC TCC AAT GGA TCC TCG TT-3′

http://www.metlin.scripps.edu
http://www.hmdb.ca
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previously reported paper [22, 25], it was confirmed that 
the number and size of fat globules in the liver tissues 
of the CFK group with low expression of C/EBPα and 
PPARγ were reduced by 36.67% compared to the HFD 
group. Therefore, when the mRNA expression of C/EBPα 
and PPARγ is decreased, lipid synthesis is reduced.

The mRNA expression analysis of adipogenesis-
related genes in epididymal tissues showed that C/EBPα 
mRNA expression was 5.85-fold lower in the CFK group 
(0.61 ± 0.13) than in the HFD group (p < 0.05) (Fig.  1B). 
Additionally, PPARγ gene expression was also signifi-
cantly lower in the CFK group than in the HFD group 
(3.58 ± 1.12), and significantly lower in the order of 
CFK (0.90 ± 0.14), GFK (1.63 ± 0.37), SK (2.33 ± 0.37), 
and CK (2.70 ± 1.20) groups. This result was similar to 
the research result of Lee et  al. [35], in which adminis-
tered kimchi helped reduce the expression of adipogen-
esis-related genes. In addition, epigallocatechin gallate 
(EGCG) in green tea is known to regulate the differen-
tiation of preadipocytes into adipocytes [36], and it is 
thought to control obesity by inhibiting the expression of 
these genes (C/EBPα, PPARγ).

Effects of CFK on mRNA expression 
of the lipogenesis‑related genes
The mRNA expression levels of lipogenesis-related genes 
(SREBP-1, LPL, DGAT1) in liver tissues were measured 
and were significantly lower in the CFK group than in 
the HFD group (Fig. 2A). SREBPs are known to promote 
the role of PPAR-γ as a key element in lipogenesis, and 
are reported to cause lipogenesis in the liver and adipose 
tissue by regulating the expression of fatty acid synthase 
(FAS) and lipoprotein lipase (LPL) [37, 38]. SREBP-1 
mRNA expression was 4.31-fold lower in the CFK group 

(0.57 ± 0.10) than in the HFD group (2.46 ± 0.21), and sig-
nificantly lower than that in the CK groups (1.50 ± 0.05). 
This result was similar to the research result of Cui et al. 
[14], who showed that kimchi reduced the expression of 
lipogenesis-related genes (SREPB-1c, FAS) in liver tis-
sues. LPL is known to produce mature adipocytes at the 
adipogenesis stage and is a target factor that contrib-
utes to the activity of PPRAγ [39]. When the expression 
of LPL is reduced, lipogenesis can be suppressed. The 
mRNA expression of LPL in the CFK group (1.07 ± 0.22) 
was significantly lower than that in the HFD group 
(4.60 ± 0.25), and 6.77-fold lower in the CFK group than 
in the Salt group (7.22 ± 0.06) (Fig.  2A). In addition, the 
mRNA expression of LPL was also significantly lower in 
the CFK group than in the SK group (2.03 ± 0.23), which 
suggests that green tea catechins, which have a strong 
polyphenol effect, may have suppressed fat accumulation 
in mice.

In epididymal tissues, the mRNA expression levels of 
lipogenesis-related genes were significantly lower in the 
CFK group than in the HFD group (p < 0.05) (Fig.  2B). 
The Salt group showed significantly higher mRNA 
expression. Thus, simple saltwater intake is thought to 
induce more health problems. Lee et  al. [35] reported 
that MSFK (kimchi with green tea) reduces the expres-
sion of SREPB-1c and FAS, which are related to lipo-
genesis. In this study, SREBP-1 mRNA expression was 
6.86-fold lower in the CFK group (0.83 ± 0.48) than in the 
HFD group (p < 0.05) (Fig. 2B). In addition, it was signifi-
cantly 5.64 and 4.04-fold lower than the CK (4.66 ± 1.81) 
and SK (3.34 ± 0.51) groups, respectively.

Diacylglycerol transferase (DGAT) is needed for the 
formation of adipose tissue and participates in the last 
stage of triacylglycerol synthesis [40, 41]. The CFK group 

Fig. 1  Effects of catechin functional kimchi (CFK) on the mRNA expression levels of adipogenesis-related genes in A liver tissues, and B epididymal 
tissues in high-fat diet (HFD)-induced obese mice. Nor, AIN-93G diet group; HFD, 45% high-fat diet group; Salt †: 45% high-fat diet and 1.5% NaCl; 
CK, 45% high-fat diet and 1.5 mg kg−1 day−1 commercial kimchi; SK, 45% high-fat diet and 1.5 mg kg−1 day−1 standard kimchi; GFK, 45% high-fat 
diet and 1.5 mg kg−1 day−1 green tea functional kimchi; CFK, 45% high-fat diet and 1.5 mg kg−1 day−1 catechin functional kimchi; C/EBPα, CCAAT/
enhancer binding protein α; PPARγ, peroxisome proliferator-activated receptor gamma. Data represent means ± SEs. †Same salinity as kimchi (1.5%). 
a−eMean values with different letters on the bars are significantly different (p < 0.05) according to Duncan’s multiple-range test
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(1.09 ± 0.04) exhibited significantly reduced expression 
levels of the DGAT1 genes compared to the Salt group. 
In addition, it was higher than in the SK (1.74 ± 0.37) and 
GFK (1.22 ± 0.07) groups (p < 0.05). These results were 
similar to the results of kimchi adding catechins, which 
reduces lipid accumulation in the liver and adipose tis-
sues by overall reducing the levels of factors related to 
lipid synthesis [22]. According to previous study [22, 25], 
the body weight of CFK group (41.17 ± 3.00 g) decreased 
by 15.95% compared to the HFD group (48.98 ± 2.18  g) 
(p < 0.05), which appears to be due to a decrease in 
mRNA expression of lipogenesis-related genes.

Effects of CFK on mRNA expression of the lipolysis 
and inflammation‑related genes
The gene associated with lipolysis,  HSL was highest in 
the CFK group and significantly higher than the groups 
administered the other kimchi samples (Fig. 3A). Lipol-
ysis is regulated by adipose triglyceride lipase (ATGL) 
and HSL [42], which acts on diglycerides in adipocytes 
to release fatty acid and glycerol molecules [43]. The 
HSL mRNA expression in the CFK group (2.98 ± 0.16) 
was significantly higher (814.50%) than that of the HFD 
group (0.33 ± 0.15) (p < 0.05) (Fig.  3A). In addition, 

it was significantly higher (2.45-fold) than in the CK 
(0.86 ± 0.10) and SK (0.99 ± 0.08) groups. Therefore, 
upregulation of HSL can be seen as promoting lipoly-
sis. The gene associated with β-oxidation (CPT-1) was 
significantly higher in the CFK group (0.80 ± 0.15) than 
in the HFD group (0.58 ± 0.07) (Fig.  3A). CPT-1 mRNA 
expression was 4.25-fold higher in the CFK group than in 
the Salt group (0.19 ± 0.05) (p < 0.05). CPT-1 is an enzyme 
that plays an essential role in fatty acid oxidation and is 
regulated by acetyl-CoA carboxylase (ACC), a marker for 
final lipogenesis [44]. Therefore, this result was similar to 
the results of the study by Hong et al. [22], in which cate-
chin and starter-added kimchi promoted HSL and CPT-1 
expression.

CFK was effective in controlling the inflammation 
associated with HFD-mediated expression of inflam-
mation-related genes in the epididymal fat tissues 
of mice (p < 0.05). Obesity is known to be associated 
with chronic inflammatory diseases [45]. The mRNA 
expression of the TNF-α gene was significantly lower 
in the CFK group (1.11 ± 0.29) than in the HFD group 
(2.72 ± 0.47) (Fig.  3B). The TNF-α mRNA expression 
was 2.88-fold lower in the CFK group than in the Salt 
group (3.18 ± 1.33) (p < 0.05). This was consistent with 

Fig. 2  Effects of CFK on the mRNA expression levels of lipogenesis-related genes in A liver tissues, and B epididymal tissues in high-fat diet 
(HFD)-induced obese mice. Group definitions are detailed in the legend of Fig. 1; SREBP-1, sterol regulatory element-binding protein-1; LPL, 
lipoprotein lipase; DGAT1, diacylglycerol O-acyltransferase 1. Data represent means ± SEs. a−dMean values with different letters on the bars are 
significantly different (p < 0.05) according to Duncan’s multiple-range test
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the results of Ziccardi et  al. [46], who showed higher 
levels of TNF-α in adipose tissue and plasma of obese 
mice. The IL-6 mRNA expression was 52.15% lower 
in the CFK group (1.02 ± 0.13) than in the HFD group 
(1.96 ± 0.09) (p < 0.05). Cytokines are secreted by adi-
pocytes and contribute to insulin resistance [47]. In 
this study, this result was similar to the results of the 
study by Woo et al. [48], who found that kimchi helps 
reduce the expression of inflammation-related factors, 
so it is thought to control obesity by suppressing the 
expression of these cytokines. These results imply that 
CFK inhibits adipogenesis and lipogenesis, reducing 
lipid accumulation in liver and adipose tissues.

Analysis of kimchi metabolites
Metabolite analysis was conducted on kimchi sample 
(3rd week) used in in  vivo to confirm the differences. 
The data were statistically analyzed by PLS-DA (Fig. 4A), 
with good quality parameters (R2X = 0.658, R2Y = 0.965 
and Q2 = 0.768, p = 8.86 × 10−5) and acceptable cross-
validation (when R2 < 0.4 and Q2 < − 0.1) (Fig.  4B). The 
0th week of SK, 3rd week of SK, 0th week of CFK, and 
3rd week of CFK were separated significantly from each 
other, and changes in these metabolite profiles helped 
separate the four samples on the PLS-DA score map.

The heatmap (Fig.  5A) and box plot (Fig.  5B) were 
used to visualize differences in metabolite levels of the 
0th week of SK, 3rd week of SK, 0th week of CFK, and 
3rd week of CFK. The heatmap color represents the 

Fig. 3  Effects of CFK on the mRNA expression levels of genes related to A lipolysis, B inflammation, in epididymal tissues in high-fat diet 
(HFD)-induced obese mice. Group definitions are detailed in the legend of Fig. 1; HSL, hormone-sensitive lipase; TNF-α, tumor necrosis factor-alpha; 
IL-6, interleukin-6; CPT1, carnitine palmitoyltransferase I. Data represent means ± SEs. a−dMean values with different letters on the bars are 
significantly different (p < 0.05) according to Duncan’s multiple-range test

Fig. 4  Partial least squares discriminant analysis (PLS-DA) score plot of kimchi metabolites (A) and its quality parameters (B). Metabolites were 
analyzed using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC–Q-TOF MS). The 
statistical acceptability of the PLS-DA model was evaluated by R2X, R2Y, Q2, and p value and validated by cross validation with a permutation test. 
SK0, 0th week of SK; SK3, 3rd week of SK; CFK0, 0th week of CFK; CFK3, 3rd week of CFK
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z-score-transformed raw data of metabolites with a sig-
nificant difference between both kimchi sample groups 
and is plotted on a blue-red color scale. The red and blue 
colors indicate an decrease and increase in metabolite 
levels, respectively (Fig. 5A).

From the box plot results, the active compounds with 
anti-inflammatory, cholesterol reduction, blood sugar 
reduction, body fat reduction, antioxidant, and antican-
cer functions such as epigallocatechin, procyanidin B2, 
caffeine, epicatechin, eriodictyol, epigallocatechin gallate, 
apiin, myricetin, kaempferitrin, rutin, quercetin, and cat-
echin gallate were confirmed, and they were found to be 
significantly higher in CFK than in SK. In addition, more 
catechins were detected in the 3rd week of CFK than in 
0th the week of CFK, which was similar to the results of 
study showing that an increase in the amount of cate-
chins extracted increased when green tea was fermented 
using solar salt [49, 50]. Therefore, it is thought that as 
fermentation progresses, the active ingredients increase 
due to the combined action of kimchi subingredients 
(salt, catechin) and lactic acid bacteria.

Catechins have several pharmacological activities, such 
as anticancer, antitumor, antimutagenic, and anti-inflam-
matory activities [51]. Catechin gallate can inhibit the 
growth of adipocytes by inhibiting glucose absorption 
[52]. Epigallocatechin gallate (EGCG) is a major polyphe-
nol and a major bioactive compound in green tea, and is 

a functional ingredient in foods and natural health prod-
ucts, often used in diet products related to obesity. There-
fore, it has been reported that supplements containing 
EGCG may be a natural treatment option for obesity [53]. 
EGCG ester derivatives with anti-inflammatory functions 
can be used to prevent and treat inflammation-mediated 
diseases [54]. Eriodictyol, one of the flavonoids, exhibits 
anti-inflammatory and antioxidant activities and has pro-
tective effects on neurons, kidneys, and lungs [55]. Due 
to this role of eriodictyol, it is widely used to treat and 
prevent obesity and related complications [56]. Rutin 
may help strengthen and increase the flexibility of blood 
vessels such as arteries and capillaries [57]. Strengthening 
blood vessels can improve overall health by alleviating 
related conditions, including bruising, spider veins, and 
varicose veins. Quercetin is known to be a flavonoid that 
reduces blood pressure, blood sugar levels and fat accu-
mulation [58, 59]. Myricetin is a natural flavonoid and 
has antioxidant and anticancer effects. It is also known to 
be effective against cardiovascular disease and diabetes 
[60]. The active ingredients of CFK are mainly substances 
related to reducing blood cholesterol and blood sugar, 
reducing body fat, and anti-inflammation. It is thought 
that these substances exert the effect of CFK regulat-
ing lipid metabolism. In a previously reported study [22, 
25], it was confirmed that CFK increases Bacteroidetes 
and decreases Firmicutes. However, further research is 

Fig. 5  Heatmaps (A) and box plot (B) of kimchi metabolites analyzed UPLC–Q-TOF MS. SK0, 0th week of SK; SK3, 3rd week of SK; CFK0, 0th week 
of CFK; CFK3, 3rd week of CFK. Y-axis is the relative abundance of compounds
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needed to determine how the active ingredients in CFK 
affect the gut microbiome.

In conclusion, this study confirmed that CFK is effec-
tive in suppressing lipid accumulation in HFD-induced 
mice by downregulating the expression of adipo-/lipo-
genesis-related genes and upregulating the expression 
of lipolysis-related genes in liver and epididymal tis-
sues. Therefore, CFK has the potential to regulate lipid 
metabolism and prevent obesity and related metabolic 
diseases, which is thought to be due to the increased con-
tent of polyphenols such as caffeine. We plan to verify the 
specific mechanism and antiobesity effect of the active 
ingredient through future research.
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